Java Space Invaders:

Deconstruccion de la logica de juego,
herencia y gestion de estados en consola.

ESTRUCTURA BASICA ‘—\\

|l:‘.lase Maln —

| Bucle de Juego |

-

Erld Pedtien [a,¥]

fLL(PI020425
{ K16 1n AsELE
{ evohTviba) ot

Arquitectura de un Clasico

{f14vi) {1v)}i}
§LC11} i'l'[]];
11{))} 111))
i} 1H):4

103 {£{{ }}

11 1} i 13

i1 !}] {411}

{entvautl static static impert:x3if.opesElil}
1f{recordlecrEnesatrl]l teSlsez;erdinillizeanat
elaslzalsnaosig: Srevavoodileaine .ooTeaoalELL]
1f{taimasomi live oit, yetdaihs i1 {fa hanurit aond
{LrHmisz) 1) ved vald
{ecragte|aicewit Eair]
t1lvex2o0lbean: sn1't

A

+

k-5
[

l
+

Calllilen Bo

&(Ep5Railll}
Sted21ml731} -
ba yaah Fonidh §

Srld Pestinan
lr.5!

.B-(‘-I.T.i Thai [04]

— 1% ¢lags Suasvidleoilaceucniin of-AufA rvenar -erive Xneeument Lol iTox3Fesind {
eeDLie statle:etafic webd.cerakllLlLlLags? oeadxse-Vimpetbsita Anntoad
enSlsdes ywoet Iwasnbirby FAlnen H I06dR [nodeeinCl Ieewvewr S 16 [Donent il baj
:1flohile(enswetrmar]izt6; sonankvt junklte; eetnonfrinlbesonaiticersCll 1}
baef1} sseeltnave-[2,;eatueel Lenwealencodtoyeeesti) £1110)
1111]? for({Lantinsexklisunsensvi]1[1to5y 0] tyyasad?l) 10812)
{1¢1]} srovonaRoElx%i [) 1ovoveetll. bosaaon[zvantall) ;3521]
EOGLE} else [vsvoléxsimicp: vaswigak] vt csJoevdg? WisLl}
£111%} £i82)} 11111} {1311%
%fl_{i}'? tiiiis 1111} {1*.”]?

L 3 14151} 100)}} 14133} {d¥11% _
1 e{f1{ft (]} {11333 3333
| {IroriZnael] . WDnTors3el)

19221 waost TsmeakerP il
' 49nTorgpasg] vaes: gliwall) 1«
| H— — —a L _ -

InheriTesce Fath Ssta Flowm
! o e :
- | Clase Base Entidad l
g
ENTIDADES ¥ HERENCIA [

Clase Invaser
lextiende Entidad) |

Clase Jugador
[extiende Entidad)

Clase Proyectll §‘

(extiende Entidad)

&

r

Stete Rackive
Trenk&CEan

Batas Flios

=N\

LOGICA DEL JUEGO Y ESTADOS

2

Movimiento de Invasores | —

Colisiones | <

- ——

Actualizacion de Estado | <

| Renderizado (Consola) |

Puntuacion J

w1.8 /f AMALISIS TECNICO // JAVA PURD

& NotebookLM

Vision General del Sistema

ENTRADA (INPUT) . ENTIDADES (DATOS) MOTOR (LOGICA)

@ P
N ..

/// ! A
£ '
ie |
Y) _
! ! * b - -
[“enum Input’]~ ——————— C Nave

Separacion de responsabilidades: Estructura jerarquica de datos.
Datos vs. Ejecucion. .

Henderizadc—} |
N

N Actualizacion J‘f—-

T

Bucle Principal.

&1 NotebookLM

La Interfaz de Control

enum Input {
IZQUIERDA("i", "Izquierda"),
DERECHA("d", "Derecha"), |
FUEGO("f", "FUEGO"), i i,
SAL TRIGEE sl Sallar™™) |

— [Input.IZQUIERDA

public static Input detectar(String texto) {

Tipado Fuerte: El uso de "enum’ evita 'numeros
magicos' o cadenas de texto dispersas por el codigo.

Mapeo Directo: El metodo "detectar(String texto)’
traduce caracteres ASCII simples a intenciones de
juego claras y legibles.

&1 NotebookLM

La Clase Madre: Entidad

' CODIGO (JAVA) | o | DIAGRAMA DE LIMITES .

class Entidad { g

protected int x, y;
protected char icono;

‘Math.min(0, ..)

public void mover(Input accion) { x Ll L | oo soalip IR Math.min(x, 11)°
x = Math.max(0, Math.min(x, ANCHO - 1)); uatiimax(® Ol | | ar =
= Math.max(-1, Math.min(y, ALTO));
} J EEEEEEET
11,11
» Encapsulamiento: Las coordenadas 'x e 'y yel L J

“icono’ son estado protegido, accesible solo por la

jerarquia de herencia Limites del Mundo: La l6gica de “mover() " impone las

reglas fisicas del tablero. Ninguna entidad puede
existir fuera de las coordenadas " [0, ANCHO-1]".

&1 NotebookLM

Herencia y Polimorfismo

NAVE (Control Manual) ALIEN (Automata)
@0verride e.mover() @0verride
public void mover(Input accion) { H > | public void mover(Input accion) {
if (accion == Input.IZQUIERDA) x--; y++; // Siempre baja
if (accion == Input.DERECHA) x++; super.mover(accion);
super.mover(accion); e.mover() |}
) e
|
|
Responde a la intencion del usuario. Comportamiento determinista:

desciende una fila en cada ciclo.

i

El motor invoca "e.mover() " de forma polimorfica,

ignorando el tipo especifico de objeto.

& NotebookLM

Balistica Simple: class Bala

Y= S V
AN
y++
v
@Override

/\ | public void mover(Input accion) {|

N y--; // La bala siempre sube
y-- super.mover(accion);

= h

Vo=l ==

« Comportamiento Inverso: Mientras los enemigos descienden, la municion asciende.

- Efimeridad: Las balas estan disefiadas para salir del tablero (y < 0), momento en
el cual el recolector de basura manual las eliminara.

& NotebooklLM

El Bucle Principal (The Game Loop)

Renderizado
//%¢?ﬁﬁ£;? dlbUJarJuegu(ﬂbjetus)kﬁ%*§%§%§é7
Logica Input Usuario
procesarColisiones() |, scanner.nextLine()

K Actualizacion /

e.mover()

Secuencialidad

En consola, el juego es
por turnos. El bucle espera
el ‘Intro’ del usuario.

Gestion de Trama

Cada iteracion del "while®
representa un ‘frame’ de
animacion.

& NotebooklLM

Gestion de Memoria
Estatica

"MAX_ENTIDADES = 30". Sin "ArrayList’ ni estructuras dinamicas.

4

0 o : E b g
Jj.!n E{\;jj - null..onullLLnull iepjf:‘:’gajg?j?”“

[NAVE] [[ALIEN] | [ALIEN] | [ALIEN]

lax O ldx 1-3 ldx 4...29

» Logica de Disparo: Al pulsar FUEGO, el motor itera buscando el primer
‘null. Si el array esta lleno, el arma se encasquilla.

& NotebookLM

El Sistema de Renderizado

Salida por

Consola // Limpiar

matriz| yikx] =" ";
// Pintar Entidades
matriz[e.y][e.x] = e.icono;

Superposicion // Imprimir
¥~ de Entidades System.out.print(matriz[y][x] + " ");

L Limpieza En cada frame, se reconstruye la
¥ de Matriz escena desde cero.

&1 NotebookLM

Deteccion de Impactos y Hitboxes

Y+1

Bala
subiendo

Zona de
Colision
Temporal

~Alien

bajando

if (posibleBala.x == alien.x &&
(posibleBala.y == alien.y ||
posibleBala.y == al p)

El Problema del Tunel: Como la bala sube y el alien baja

en el mismo turno, podrian cruzarse sin compartir
coordenada exacta.

Solucion: La comprobacion extendida (‘y-1") detecta el

cruce en el tiempo.

& NotebooklLM

Gestion de Estado y Limpieza

Entidad fuera de
limites ("y < 07)

Colision detectada

-

Alien llega al fondo
(@*>= AL0F)

-

Action: if (impactado) A
“objetos[i] = null | objetos[i] = null; // Liberar memoria
g System.out.println(";ALIEN DESTRUIDO!");
Action:
‘objetos[i] = null |
Score Update Derrota: Invasion detectada en la ultima fila.

’

Victoria: Contador "aliensVivos' llega a 0.

=

Action: -
“invasion = true’ J

&1 NotebookLM

Resumen Techico

Arquitectura POO

Estado Estatico

["Entidad”] i=0 =1 i=2 e =
T JLILIK. °
| l) B O £l
l "Nave']' [“Aldien. L . =
d X ey
— Control — Automatico
Entidad como contrato base. Gestion manual de memoria

Polimorfismo para separar
|6gica de control (Nave) de
|6gica automatica (Alien). y muertes.

con Array fijo. CRUD basico
sobre indices para disparos

El Bucle

Iﬂﬂﬂr;jll b “?hh |
Input Fisica Renderizado

Coordinacion centralizada de
Input, Fisica y Renderizado en
un solo hilo de ejecucion.

Complejidad emergente a partir de estructuras simples.

& NotebookLM

Resultado de Juego: Victoria

Vi
F—"\

> procesando...

> :VICTORIA!

> aliensVivos: 0
,j > System.exit(0);
7

> B

Disefio basado en la implementacion Java de Space Invaders.
£ NotebookLM

